
Final project report for E0 306: Deep Learning

ADVERSARIAL EXAMPLES FOR CNNS

Julian D’Costa & Gaurang Sriramanan
Indian Institute of Science

ABSTRACT

Despite their superhuman ability to recognize images, CNNs are still easily fooled
by adversarial examples, a problem of growing importance as image recognition
expands into areas where reliability and security are paramount. We study ro-
bust optimization, a training method based on minimizing worst-case loss for a
given threat model. We also consider the Wasserstein metric as an alternative
threat model to the standard Lp balls, as a way to capture a different aspect of
”intuitively small” perturbations, examining the theory behind computing fast ap-
proximations to the notoriously intractable Wasserstein metric. Our experimental
work demonstrates the transferability and stability of perturbations across images
and networks and the robustness of adversarial training across threat models, in
particular displaying the extensive robustness of Wasserstein-trained networks.

1 INTRODUCTION

Adversarial examples for CNNs were studied in the early papers Intriguing properties of neural
networks [Szegedy et al. (2013)] and Explaining and Harnessing Adversarial Examples [Goodfellow
et al. (2014)]. They showed that it was easy to generate an image that was only imperceptibly
different from an image that the neural network classified correctly, yet this perturbed image would
be wrongly classified. These papers used a constraint that the perturbation must be small in the l∞
norm, which meant that no pixel could be changed by more than a given small epsilon.

An easy way to generate these examples is by Fast Gradient Sign Method (FGSM), which was
one of the first methods used to generate Adversarial examples in the DL community [Goodfellow
et al. (2014)].It tries to move the image in the direction of the gradient of the loss function, which
maximises the loss, subject to the constraint that no pixel can change more than epsilon. This leads
to setting the perturbation

η = ε sign (∇xJ(θ,x, y)) ,

assuming the function is linear enough (or that epsilon is small enough) that the corner of the l∞-
norm ball is the closest point in the constraint set to the loss maximising perturbation. A short
analysis shows that FGSM is the exact optimal attack against a linear, binary classification model
under l∞ constraints. Thus, FGSM assumes a linear approximation of the neural network for a
pertubation δ ∈ (−ε, ε). The following image is an example of FGSM we implemented:

Figure 1: The FGSM attack was run using ε = 0.005, using the ResNet18 convolutional network
pretrained on ImageNet. We used the Default Pretrained ResNet18 available on PyTorch

1



Final project report for E0 306: Deep Learning

2 ROBUST OPTIMIZATION

While it is possible to defend networks from FGSM based attacks by training on them (adversarial
training, i.e. adding adversarial images to the training set), these networks are still vulnerable to
other attacks. A more principled approach to training robust networks was introduced in Towards
deep learning models resistant to adversarial attacks [Madry et al. (2017)].

They suggest that instead of adding more and more adversarial images to the training set in reaction
to each new attack, one should start with a concrete threat model to defend against, and optimize a
guarantee that the network will remain robust against any attack that falls within the parameters of
the threat model.

The new loss function is defined as follows: We now allow an adversary to perturb the sample x
before feeding it to our classifier f . Since we are primarily interested in perturbations that do not
change the true label, we limit the adversary by restricting it to a pre-defined perturbation set P (x).
We want to minimize the worst possible performance in this set. This leads to the following quantity:

Ex,y∼D
[

max
x′∈P (x)

L (f (x′) , y)

]
.

Note that since this robust loss does not specify a specific attack method, if we get a low robust loss,
we can be confident that no attack at the given data point with the threat model P (x) will succeed.
The question is, what is a good perturbation set P (x), and how can we optimize the robust loss?

Madry et al take the perturbation set P (x) to be the well-studied l∞ epsilon ball, which generates
imperceptible perturbations as long as epsilon is small.

2.1 TRAINING THE ROBUST MODEL

The empirical version of the Robust loss

Ex,y∼D
[

max
x′∈P (x)

L (f (x′) , y)

]
,

is

min
θ

1

n

n∑
i=1

max
x′∈P (xi)

L (fθ (x′) , yi) .

In order to optimise this function with SGD, we need to compute gradients of the robust loss

φx,y(θ) = max
x′∈P (x)

L (fθ (x′) , y) .

Note that φ is itself an optimization problem, so we can’t simply run backpropagation. Fortunately,
we can apply Danskin’s theorem, which tells us that

∇θφx,y(θ) = ∇θL (fθ (x∗) , y) ,

if x∗ is a maximiser of the inner max problem.

Thus getting the gradient reduces to finding the maximiser, which is the ”worst” adversarial point.
Madry et al use Projected Gradient Descent to find these points. By running PGD on 105 random
seeds, and getting relatively similar loss values, they empirically checked that there are no points
with much higher loss to be found, so PGD is finding points close to the true maximisers. While
Danskin’s theorem is only valid at the true maximiser, this result gives us confidence that the gradient
will give us relatively good updates.

Projected Gradient Descent is an iterative algorithm for constrained optimization that involves
taking a gradient step and projecting back into the constraint set, for example the l∞ update:
x′ = ΠP (x)(x− η · sign(∇L(x, y))) , and repeating this procedure until convergence.

This gives the following algorithm for robust training:

1. Sample a data point x, y.
2. Compute the maximizer x of the robust loss φx,y(θ)

2



Final project report for E0 306: Deep Learning

3. Compute the gradient g = ∇θL (fθ (x∗) , y)

4. Update θ with the gradient g
5. Repeat steps 1-4 until convergence.

Practically, we find some convergence issues while utilising just the SGD algorithm for implement-
ing PGD attacks. Madry et al argue that this is due to the small initial norm of the gradients, which
poses a problem as increasing the learning rate to counteract the small initial gradients causes clip-
ping just like in FGSM in later iterations. To solve the problem, they suggest using normalised
steepest descent method, which has the update

z := z − argmax
‖v‖≤α

vT∇zf(z).

We attempted an alternative fix: we decided to utilise the Adaptive Moment Estimation method
(ADAM) for implementing PGD, as it uses running averages of both the gradients, as well as the
second moments of the gradients which helps alleviate the problem of small initial gradients, by
using the normalising and forgetting factors:

m(t+1)
w ← β1m

(t)
w + (1− β1)∇wL(t)

,
v(t+1)
w ← β2v

(t)
w + (1− β2)(∇wL(t))2,

w(t+1) ← w(t) − η m̂w√
v̂w + ε

.

Figure 2: Our convergence results for PGD with SGD and ADAM

3



Final project report for E0 306: Deep Learning

Figure 3: We ran a PGD attack with 50 iterations and epsilon = 2/255 on a ResNet18 convolutional
network pretrained on ImageNet

4



Final project report for E0 306: Deep Learning

2.2 RESULTS OF PGD ADVERSARIAL TRAINING

Figure 4: Madry et al’s results show that an l∞ trained network achieves 89% accuracy on MNIST
and 45% accuracy on CIFAR10 against a PGD based l∞ attack

Madry et al ran a challenge inviting people to break their PGD trained networks, but no attack
was able to reduce accuracy on CIFAR10 to less than 41%, supporting their claim that PGD is the
’ultimate first-order adversary’.

3 WASSERSTEIN ADVERSARIAL EXAMPLES

3.1 THE WASSERSTEIN METRIC

Individual pixels cannot change very much in lp norm balls, but there are transformations, like trans-
lations and rotations that look small to humans since they preserve the large scale structure of the
image, even though individual pixels may change a lot. A metric that captures some of this intuition
is the Wasserstein metric, which is defined as a distance between two probability distributions µ and
ν by

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
M×M

d(x, y)p dγ(x, y)

)1/p

This quantity can be intuitively understood as the minimum cost of moving probability mass to
change one distribution into another [see Villani (2008) for details]. When applied to images,
this can be interpreted as the cost of moving pixel mass from one pixel to another, where the cost
increases with distance. Let x and y be two images, considered as points in Rn+ with coefficients
summing to 1, and let C ∈ Rn be some non-negative cost matrix where Cij encodes the cost of
moving mass from xi to yj . Then, the Wasserstein distance dW between x and y is defined to be

dW(x, y) = min
Π∈Rn×n

+

〈Π, C〉

subject to Π1 = x,ΠT 1 = y,

where the minimization is over transport plans Π, whose entries Πij encode how much mass moves
from xi to yj .

5



Final project report for E0 306: Deep Learning

Figure 5: Wasserstein vs lp

To illustrate the difference between lp norms and the Wasserstein metric, consider the image above.
The top example utilizes a perturbation ∆W to shift the image one pixel to the right, which is
small with respect to Wasserstein distance since each pixel moved a minimal amount, but large with
respect to l∞ distance since each pixel changed a maximal amount. In contrast, the bottom example
utilizes a perturbation ∆∞ which changes all pixels to be grayer. This is small with respect to l∞
distance, since each pixel changes by a small amount, but large with respect to Wasserstein distance,
since the mass on each pixel on the left had to move halfway across the image to the right.

3.2 PROJECTION ONTO THE WASSERSTEIN BALL

The difficulty with using the Wasserstein ball as our constraint set P (x) is that projecting onto the
Wasserstein ball is itself an optimisation problem, unlike the case of lp, where there exists a closed
form solution.
The paper Wasserstein Adversarial Examples via Projected Sinkhorn Iterations [Wong et al. (2019)]
uses the technique of adding an entropy regularisation term for the transport plan Π, and subse-
quently using a modified version of the Sinkhorn-Knopp scaling algorithm (for converting a matrix
with positive entries to a doubly-stochastic matrix by pre- and post-multiplying by diagonal matri-
ces) which approximately minimises the Wasserstein metric as was shown earlier in [Cuturi (2013)].
The key proposal in the paper is to solve:

minimize
z∈Rn

+,Π∈R
n×n
+

1

2
‖w − z‖22 +

1

λ

∑
ij

Πij log (Πij)

subject to Π1 = x,ΠT 1 = z

〈Π, C〉 ≤ ε
.

In order to actually solve the constrained minimisation problem, they solve the Dual Problem, by
maximising g, the infimum of the Lagrangian:

g(α, β, ψ) = − 1

2λ
‖β‖22 − ψε+ αTx+ βTw

−
∑
ij

exp (αi) exp (−ψCij − 1) exp (βj)

Observe, the dual variables α and β correspond to the equality constraints Π1 = x and ΠT 1 = z,
while the positive dual variable ψ corresponds to the inequality constraint 〈Π, C〉 ≤ ε.
The Karush-Kuhn-Tucker optimality conditions (similarly used in SVM’s) are now used to find
the analytical form of g in terms of optimal z∗ and (Πij)

∗. The optimal values for (α∗, β∗, ψ∗)
that maximise the dual, are then assured to be the corresponding optimal values for minimising the
Primal problem.
The optimal values α∗ and β∗ can be found analytically, with the latter requiring the Lambert-W
function. However, the optimal ψ∗ cannot be solved for analytically, and so the paper uses Newton
iteration till convergence for solving the Dual problem, while simultaneously ensuring the positivity
constraint of ψ.

This algorithm produces a point that may not be the optimal projection (since we are minimizing a
different objective), but the point is guaranteed to lie within the Wasserstein ball, which means that
all the attacks do belong in the constraint set.

6



Final project report for E0 306: Deep Learning

Figure 6: A comparison of a Wasserstein (top) vs an l∞ (bottom) adversarial example for an MNIST
classifier (for ε = 0.4 and 0.3 respectively), showing the original image (left), the added perturbation
(middle), and the final perturbed image (right). The Wasserstein perturbation has a structure reflect-
ing the actual content of the image, whereas the l∞ perturbation also attacks the background pixels.
From Wong et al. (2019)

3.3 WASSERSTEIN RESULTS

Figure 7: Wasserstein attacks on various networks

Wong et al attack a standard network, an l∞ robust network and a network trained with Wasserstein
adversarial examples. They find that l∞ robustness transfers substantially to Wasserstein attacks.

Figure 8: Fooling rates for Wasserstein attacks on MNIST

7



Final project report for E0 306: Deep Learning

Notice that Wong et al were not able to attack the adversarially trained network down to 0% accuracy.
While this may be because they did not try large enough values of epsilon, it raises the possibility that
the Sinkhorn iteration with entropy regularisation is not a good enough approximation to generate
strong adversarial examples.

Figure 9: Fooling rates for Wasserstein attacks on CIFAR10

8



Final project report for E0 306: Deep Learning

4 TRANSFERABILITY OF ROBUSTNESS

While Wong et al found that l∞ robustness conferred substantial protection against Wasserstein
attacks, we also looked at the paper A Rotation and a Translation Suffice: Fooling CNNs with
Simple Transformations [Engstrom et al. (2017)], which showed that l∞ robust networks are highly
vulnerable to adversarial images generated by rotating and translating correctly classified images.
Surprisingly, this effect persisted even after augmenting the data with rotated and translated images.

Figure 10: Rotation and Translation attacks

Notice that l∞ robust networks do even worse than standard networks. This result seems to contra-
dict Wong et al’s result that l∞ robustness transfers to Wasserstein attacks.

The paper Robustness May Be at Odds with Accuracy [Tsipras et al. (2018)] pointed out that ad-
versarially robust networks cannot use features that are very weakly correlated with the output, even
when that would greatly increase standard accuracy. They are forced to rely on a few robust features,
which are more like the ones humans rely on.

Figure 11: Heat map of gradient activations for each pixel [Madry & Kolter (2018)]

9



Final project report for E0 306: Deep Learning

As the figure shows, the gradient of the robust model appears far more human-interpretable. Since
human beings are robust to imperceptible perturbations by definition, it is plausible that models using
only a few robust features would also be invariant to all such perturbations, explaining transferability
of robustness.

10



Final project report for E0 306: Deep Learning

5 EXPERIMENTAL WORK

5.1 TRANSFERABILITY AND STABILITY OF THE ATTACK

We performed a wide variety of experiments to study the nature of Adversarial examples, particu-
larly to highlight some of the unexpected properties that they enjoy.

Note that all images in the rest of the report show the perturbed image on the right.

Consider again, the PGD attack on the Hamster image:

Figure 12: Directed PGD attack to misclassify the Image as a Magnetic Compass with 50 itera-
tions and epsilon = 2/255 on ResNet18. The original image is correctly classified with 99.989%
confidence, while the attacked image is misclassified with 99.97% confidence

11



Final project report for E0 306: Deep Learning

The Perturbation δ is almost imperceptible to the human eye, and must be magnified by several times
to appreciate the underlying structure. The first image was modified to have mean = 127 across all
three channels, else it would appear completely black. A few pixel values had to be clipped to
be within range for the second image, leading to a small distortion in colour space. We will, for
comparison purposes, utilise this same perturbation for all the following experiments as well.

Figure 13: Perturbation under 1X and 50X Magnification

12



Final project report for E0 306: Deep Learning

Next, we looked at the stability of the Adversarial perturbation to the addition of random noise to
the image. We find that the attack is very stable, and noise sampled from a uniform distribution that
is large relative to the perturbation itself, still does not avert a misclassification.

Figure 14: Identical Perturbation with 7X Noise (uniform in [0, 1] · 7ε) added still fools ResNet18,
causing a wrong prediction with 94.2% confidence

13



Final project report for E0 306: Deep Learning

We further wanted to see the effect of the perturbation on images which seem not too different to
the human eye, but very different individual pixel values. Thus we applied the same perturbation to
a flipped image of the hamster. We found that we had to increase the value of epsilon (14.0/255) to
successfully fool the network.

Figure 15: A Very Suprising Result: Though the flipped image of the Hamster is correctly identified
with more than 99% accuracy, and Jigsaw-Puzzle having predicted probability very close to zero,
the same perturbation (epsilon = 2/255) appears to still cause a cross-over in the decision boundaries.
However, here the confidence for Jig-saw Puzzle for the perturbed image is lower-only 74%, as this
was not a targeted attack to misclassify as a Jigsaw-Puzzle, but instead resembles an undirected
attack

14



Final project report for E0 306: Deep Learning

To study a little more about the nature of the perturbation, we looked at its efficacy on a completely
different data-distribution. We chose a particularly interesting example where the ResNet initially
misclassified the original image.

Figure 16: Upon adding the original delta that caused the Hamster image to be predicted as a Mag-
netic compass, we again see a cross-over between decision boundaries: The original probabilities
for otter and beaver was 33% and 64% respectively, but for the second image the predictions switch:
they become 52% and 46% respectively. This indicates that the perturbation is far from being ran-
dom noise even for seemingly disparate classes.

15



Final project report for E0 306: Deep Learning

To further study the robustness of the adversarial attack, we intended to add both systemic and
random noise to the image. To do so, inspired from 3D-printed adversarial examples created by
Athalye et al. (2017), we took a picture of the laptop screen with the adversarial image with our
mobile phone, and then ran this on the network. This gave the first negative result amongst all the
experiments, which is to say, the network was not fooled.

Figure 17: Very Severe Distortions can be seen in the Mobile-Camera Picture of the Perturbed
Image, leading to nullification of the Attack

16



Final project report for E0 306: Deep Learning

Given a fixed epsilon, it was found that ADAM was a much better optimiser than SGD. We thus
made a plot for the Directed PGD Attack.

Figure 18: ADAM was initialised with learning rate 0.001, (β1, β2) = (0.9, 0.999) and ε = 10−8.
SGD was initialised with learning rate 0.07. All experiments were carried out on the same Hamster
Image for comparison purposes.

17



Final project report for E0 306: Deep Learning

5.2 TRANSFERABILITY OF ROBUSTNESS

Now, in pursuit of learning about the transferability of robustness to different kinds of Adversarial
attacks, we looked at the robustness of a network adversarially trained on Wasserstein examples. For
this, we used the network trained on the standard MNIST dataset as well as Wasserstein adversarial
images as uploaded on the [Wong et al. (2019)] Github page. We studied the robustness of this
network(which had 2 convolutional layers, and 2 fully-connected layers, with ReLU activations) to
l∞ attacks, as well as adversarial attacks generated by composing rotations and translations as in
the [Engstrom et al. (2017)] paper.

For comparison purposes, we perform the same experiments with a network with identical
architecture, but which has not been exposed to Wasserstein attacks during training time and only
to standard MNIST training examples, which we refer to as the Vanilla Network in the following
sections.

We decided to work with MNIST images as they were easier to visualise and interpret the perturba-
tions, as compared to CIFAR10. Ideally, we would have liked to have worked with a Deep Network
adversarially trained on ImageNet, but no such network is yet publicly available, and training such
a network that simultaneously requires generation of a large sample of Wasserstein examples is
beyond the compute power available to us.

We study the behaviour of the two networks, as we intuitively expect small rotations and translations
to have small Wasserstein distance from the original image.

Standard Accuracy: The Vanilla network actually slightly out-performs the Wasserstein-
Adversarially network on the Test Set of MNIST: 98.90% for the former and 96.95% for the latter
network.

l∞ Attacks: We ran Directed Projected Gradient Descent Attacks on unseen MNIST Test images,
to try and make the network misclassify any input image as a ’5’. We found some interesting results
in both networks:
In the Vanilla Network, we found that the network was fairly robust to l∞ attacks with epsilon
≤ 12/255, having accuracy over 95%. Furthermore, we were surprised when we discovered a sharp
”epsilon-cliff” on a network that was not adversarially trained. It was also observed that the directed
PGD attack for any given digit does not transfer well to other images, even some other with the same
label. This transferability seems work better with larger images like 224x224x3 as in ImageNet.

Figure 19: Directed PGD l∞ Attack on Vanilla network with 100 iterations using ADAM, epsilon =
15/255

18



Final project report for E0 306: Deep Learning

ε 12/255 13/255 14/255 15/255 16/255
Prediction 7 7 5 5 5

Prediction Accuracy 97.16% 76.24% 79.44% 97.75% 99.64%

Table 1: Epsilon-cliff in directed PGD l∞ attack to turn a 100% 7 into a 5

For the Wasserstein-Adversarially trained net, it was found that it was extremely robust against l∞
attacks, with the accuracy falling below 90% only for relatively large epsilon values, over 40/255.

Figure 20: Directed PGD l∞ Attack on Wasserstein network with 100 iterations using ADAM,
epsilon = 40/255. It was observed for several examples that though the confidence was lowered, it
rarely fell below 50%, indicating correct predictions

19



Final project report for E0 306: Deep Learning

Adversarial Attacks with Only Rotation and Translation: As detailed in the [Engstrom et al.
(2017)] paper, it suffices to only use simple rotations and translations to fool fairly sophisticated
convolutional networks. The paper lays down several methods to produce adversarial attacks, which
include Worst-of-k Attacks, Random Search and Grid Search in the parameter space for rotation,
horizontal and vertical translations. In the paper, they report that the best results were found while
performing exhaustive grid-search.

We decided to use grid-search for producing the attacks. However, we limited the range of rotation
of images to be within 20-degrees clockwise and anticlockwise in steps of 0.5 degrees, compared to
30 degrees used in the paper (30 degree rotations on MNIST are barely recognizable). We however
follow the paper in the translation range: about 10% of the image dimensions, which is 3 pixels for
MNIST (being 28x28 images), which was varied in steps of 1 pixel each.

We tried to find the optimal combination of image rotation angle, horizontal and vertical translation
that minimises the confidence of the correct label, making it commit an error. We found that in
general, these attacks were quite effective on both the Vanilla Network as well as the Wasserstein-
Adversarially trained net, although the latter seemed to perform better in general. Not a single
example was found where the Vanilla network correctly classified a rotation-translation adversarial
image on which the other network committed an error.

Rotation, Translation Wasserstein trained Vanilla network
20◦,+− 3 pix 32% 25%
10◦,+− 3 pix 42% 32%
5◦,+− 1 pix 90% 83%

Table 2: Accuracy on rotated translated image: strongest attack chosen by grid search

Figure 21: Adversarial Attack by Only Composing Rotations and Translations. The Vanilla Network
predicts the wrong class with fair confidence. 20 degrees clockwise rotation, with 3 pixels left
translation and 2 pixels translation upward gave the most effective attack.

20



Final project report for E0 306: Deep Learning

Figure 22: Adversarial Attack by Only Composing Rotations and Translations. The Wasserstein
Adversarially Trained Network predicts the correct class albeit with much lower confidence. 2.5
degrees anticlockwise rotation, with 3 pixels left translation and 3 pixels translation upward gave
the most effective attack.

Figure 23: Adversarial Attack by Only Composing Rotations and Translations. (Vanilla) It was
generally observed that for digits that were already a bit rotated, the optimal attack just further
rotates the image, along with small translations. The optimal attack as shown here is with 20 degrees
clockwise rotation, and 1 pixel right translation .Surprisingly, it was observed even with rotationally
symmetric digits like 0.

21



Final project report for E0 306: Deep Learning

Figure 24: Adversarial Attack by Only Composing Rotations and Translations. The Wasserstein-
Robust net in general also had lower confidence while making wrong predictions compared to the
first network. Here too a similiar attack turned out to be optimal: 20 degree clockwise rotation, with
2 pixels translation to the right.

22



Final project report for E0 306: Deep Learning

6 CONCLUSIONS

Our first set of experiments showed that CNNs are sufficiently linear that an adversarial delta de-
signed to cross a decision boundary in one location will in fact work in other locations also. Such a
delta is also stable under the addition of large amounts of noise.

We found a sharp epsilon cliff in the Vanilla network for MNIST, but did not find a cliff for ResNet on
ImageNet. Such cliffs are often seen in adversarially trained networks, precisely at the epsilon value
used in training, but we cannot completely explain why this should happen for a vanilla network.

Our transferability of robustness experiments showed that Wasserstein robustness transfers ex-
tremely well to l∞ attacks, which is quite surprising, since these can be extremely large in the
Wasserstein norm.

A possible explanation is that adversarially trained networks are forced to rely on fewer features that
are highly correlated with the output. As pointed out in the Transferability of Robustness section,
this could make them less vulnerable to all perturbations of brittle, weakly-correlated features.

6.1 THE INTRIGUING TRILEMMA

In our presentation we pointed out that the following three results appeared to be mutually contra-
dictory:

1. Wong et al. (2019) - l∞ robustness provided substantial protection against Wasserstein
attacks

2. Engstrom et al. (2017) - l∞ robustness is completely orthogonal to rotation-plus-translation
attacks

3. Rotations and translations are relatively small in the Wasserstein norm

We came up with some ideas to explain this discrepancy. While rotations and translations are intu-
itively small in the Wasserstein metric, Wong et al used a maximum epsilon of 2.1 in training their
adversarially robust network. However a simple one pixel translation would have a distance of 1
unit. So rotations and translations are not as small as what one might expect at first glance. Another
point is that Wong et al only used local 5 x 5 transport plans, for computational reasons. This is
quite a restrictive subset of the Wasserstein ball, and does not include translations and rotations.
As pointed out in the Wasserstein Results section, Wong et al did not attack their model down to
zero percent accuracy. This could be due to Sinkhorn iteration being unable to find a point close
enough to the optimum. Our experimental results on rotations show that Wasserstein adversarial
training provides some amount of robustness to rotations and translations, but not much compared
to its robustness to l∞ attacks.

Since l∞-trained networks do very poorly on rotations and translations, Wasserstein training offers
a good balance of robustness to a variety of attacks that reflect our intuition of visual similarity.

REFERENCES

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. arXiv preprint arXiv:1707.07397, 2017.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
neural information processing systems, pp. 2292–2300, 2013.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A
rotation and a translation suffice: Fooling cnns with simple transformations. arXiv preprint
arXiv:1712.02779, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

23



Final project report for E0 306: Deep Learning

Alexsandr Madry and Zico Kolter. Adversarial robustness; theory and practice, 2018. URL https:
//adversarial-ml-tutorial.org/. NeurIPS tutorial on Adversarial Robustness.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. stat, 1050:11, 2018.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Eric Wong, Frank R Schmidt, and J Zico Kolter. Wasserstein adversarial examples via projected
sinkhorn iterations. arXiv preprint arXiv:1902.07906, 2019.

7 NETWORK ARCHITECTURE

For the Vanilla and Wasserstein trained networks:

net = nn.Sequential(
nn.Conv2d(1, 16, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, 4, stride=2, padding=1),
nn.ReLU(),
Flatten(),
nn.Linear(32*7*7,100),
nn.ReLU(),
nn.Linear(100, 10) )

24

https://adversarial-ml-tutorial.org/
https://adversarial-ml-tutorial.org/

	Introduction
	Robust Optimization
	Training the Robust Model
	Results of PGD adversarial training

	Wasserstein Adversarial Examples
	The Wasserstein metric
	Projection onto the Wasserstein ball
	Wasserstein results

	Transferability of Robustness
	Experimental Work
	Transferability and Stability of the Attack
	Transferability of Robustness

	Conclusions
	The intriguing Trilemma

	Network Architecture

